Thursday, November 5, 2020

INHERITING CANCER

CANCER HEREDITY
Cancer is a genetic disease—that is, cancer is caused by certain changes to genes that control the way our cells function, especially how they grow and divide. Genes carry the instructions to make proteins, which do much of the work in our cells. Certain gene changes can cause cells to evade normal growth controls and become cancer. For example, some cancer-causing gene changes increase production of a protein that makes cells grow. Others result in the production of a misshapen, and therefore nonfunctional, form of a protein that normally repairs cellular damage.  

Inherited genetic mutations play a major role in about 5 to 10 percent of all cancers. Researchers have associated mutations in specific genes with more than 50 hereditary cancer syndromes, which are disorders that may predispose individuals to developing certain cancers. Genetic tests for hereditary cancer syndromes can tell whether a person from a family that shows signs of such a syndrome has one of these mutations. These tests can also show whether family members without obvious disease have inherited the same mutation as a family member who carries a cancer-associated mutation. [1]


Everyone has two copies of each set of genes from both parents. If a person inherits a mutation in a Lynch syndrome gene, they still have the normal copy of the gene from the other parent. Cancer occurs when a second mutation affects the normal working copy of the gene, so that the person no longer has a copy of the gene that works properly. Unlike the inherited Lynch syndrome mutation, the second mutation would not be present throughout the person’s body, but would only be present in the cancer tissue. However, not everyone with Lynch syndrome will get cancer. You and your family members are more likely to have Lynch syndrome if your family has a strong history of colorectal cancer. Family members who inherit Lynch syndrome usually share the same mutation. If one of your family members has a known Lynch syndrome gene mutation, other family members who get genetic testing should be checked for that mutation. (source: CDC.gov)

GENETICS VS. GENOMICS

Excerpted from www.genomicmedicineworks.com

Genetics and genomics sound alike and are often used interchangeably, yet important scientific and clinical distinctions exist between these two scientific fields of study. The classical definition of genetics is the study of heredity, how characteristics and traits (phenotypes) of a living organism are transmitted from one generation to the next. This occurs via deoxyribonucleic acid (DNA), a double helix molecule in the cell’s nucleus that comprises genes—the basic unit of heredity. Many of the early principles and rules of heredity were discovered by an Augustinian monk and scientist, Gregor Mendel. His seminal research with pea plants in the mid-1800’s laid the foundation for modern-day genetics.

Genomics is the next evolution of classical genetics, and became possible only in recent decades due significant advances in DNA sequencing and computational biology. In 1976, Belgian scientists succeeded in fully sequencing the genome of bacteriophage MS2, a bacteria-infecting virus. They identified all 3,569 DNA base pairs, and the 4 nucleotides (Adenosine, Cytosine, Guanine and Tyrosine) that make up the DNA code. The first animal genome was completely sequenced in 1998. Five years later, with more than 1,000 researchers from six countries collaborating on the Human Genome Project, all 3.2 billion DNA base pairs in the human genome were identified.  Genomics is the study of the entirety of an organism’s genes—the genome. Genomic researchers analyze enormous amounts of DNA-sequence data to find variations that affect health, disease or drug response. In humans, that means searching through about 3.2 billion units of DNA across 23,000 genes.


In a clinical sense, genetics is the study of single genes or parts of genes and their effects on a person’s development, disease risk or response to drugs. This is generally referred to as a “monogenic” approach, since the focus is on a single gene. In contrast, genomics is the study of the function and interactions of all the genes in the genome.

While genetics and genomics are still quite distinct in how they impact health and disease, scientists are starting to view genetics and genomics as part of a continuum. On one end of the spectrum are single gene disorders with high penetrance – meaning if you have the mutation, you get the disease. On other end are genomic SNPs, which are common, low penetrance gene variants from multiple locations interacting with environmental factors, leading to complex diseases. Unlike genetic mutations, SNPs don’t automatically cause disease.

Genomic Medicine: It is now possible to use results from clinically-based genomic testing to evaluate a person’s disease susceptibility, and develop evidence-based, personalized intervention strategies to reduce those risks. These strategies include DNA-directed lifestyle modifications, dietary recommendations, nutritional supplements and/or exercise, all of which influence how these genes function to create health or disease. Biomarker testing can then be used to evaluate whether the intervention is efficacious. With this approach, the guess-work and inefficiencies of trial-and-error strategies are greatly reduced, leading to better health more quickly and cost-effectively.

Our comprehensive Ultimate Wellness genomic test provides gender-specific reports to create personalized programs for many health conditions, including:

  • Prevent ER+ breast cancer or its recurrence in women diagnosed with the condition
  • Reverse osteopenia and osteoporosis
  • Prevent or treat Type II diabetes, heart disease, stroke, metabolic syndrome and obesity.
  • Optimize athletic performance
  • Customize nutrient requirements and resolve nutritional paradoxes
  • Prevent, treat and manage depression and anxiety
  • Plus many more health and wellness issues
  • Genomic Medicine is personalizing healthcare with precision. 

To see complete article, visit: https://genomicmedicineworks.com/genetics-genomics/


About the Author

ROBERTA KLINE MD
Co-Founder & CEO of Genomic Medicine Works. Board-certified Ob-Gyn physician, author, educator, genomics expert and entrepreneur, Dr. Kline is passionate about helping others harness the power of personalized, DNA-directed healthcare. Dr. Kline graduated magna cum laude and Phi Beta Kappa from the University of Connecticut. She received her medical degree from the University of Connecticut School of Medicine under an Air Force Health Professions scholarship, and completed her Obstetrics and Gynecology residency at Wright Patterson AFB earning multiple honors. Today, she brings her expertise in healthcare, practice development, genomic science and education, clinical and genomic medicine along with Human Design to Genomic Medicine Works.



Directory of Inherited Cancer Syndromes source: NIH LINK
• BRCA1 / BRCA2 - breast & ovarian cancer
• Cowden Syndrome
• Diaphyseal medullary stenosis
• Duodenal carcinoid syndrome
• Endolymphatic sac tumor
• Familial adenomatous polyposis
• Familial isolated pituitary adenoma
• Gardner syndrome
• Hereditary diffuse gastric cancer
• Hirschsprung disease ganglioneuroblastoma
• Langerhans cell histiocytosis
• Li-Fraumeni syndrome
• Lynch syndrome
• Multiple endocrine neoplasia:
- (type 1
 | type 2A | type 2B)
• MYH-associated polyposis
• Oslam syndrome
• Paraneoplastic Neurologic Disorders
• Perlman syndrome
• Pheochromocytoma | islet cell tumor synd.
• Premature aging Okamoto type
• Stewart Treves syndrome
• Von Hippel-Lindau disease
• WAGR syndrome

 LYNCH SYNDROME is a hereditary cancer condition in which a mismatched repair gene, which ordinarily repairs errors in DNA duplication, is defective. As a result, individuals are predisposed at a very high lifetime risk of cancer, including an up to 85% risk for colorectal cancer, 65% risk for uterine cancer, 19% risk for gastric cancer, 13% risk for ovarian cancer and a higher than average risk for other cancer including cancers of the liver, gallbladder, kidney, bladder, prostate, pancreas, skin, brain and breasts. With genetic testing, there is hope...once diagnosed, annual cancer screenings take place and cancers can be treated or removed before becoming life threatening. By knowing our family history and having a great medical team, we live longer than ever before...as long as anyone else!




An Introduction to Lynch Syndrome
By: Lindy Bruzzone

I was diagnosed in 2007 with colorectal cancer which was tied to my having Lynch Syndrome.  There are tens of thousands of people now diagnosed with this genetic disorder which means this is NOT a RARE disorder like most might think.  It came from a defective mismatch repair gene, where instead of repairing errors in DNA replication, it puts in different proteins and create more errors than it tries to keep doing. 

I produced this video 10 years after I lost lost my father. It was just so difficult for me to lose him that way. The day before he died, he said to me, "the doctors think it's hereditary, go get checked and tell your brother and sister, to get checked."  After his funeral, my brother and I started looking for the right cancer center to get help. Knowing my father's reports, my surgeon and other doctors jumped in to get me tested, and sure enough--- it was positive. 

That's why Lynch Syndrome International was developed because nobody was getting diagnosed. NOW they are! And then when Color Genomics was developed (a Steve Jobs startup offering for FREE genetic testing), suddenly everybody started getting tested because they could finally afford it. They didn't want insurance companies involved. It took care of every barrier that we have to testing for hereditary cancers. 

tbc


References

1) Cancer Heredity / NIH: https://www.cancer.gov/about-cancer/causes-prevention/genetics